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ABSTRACT

A new algorithm for estimating motion from image sequences
is presented. 1Initial motion estimates are determined based
on a least-squares solution to a set of independent linear con-
straints on the motion at a pixel. These initial estimates are
then improved by a nonlinear smoothing operation. The results
of this algorithm are compared with those obtained by the Horn-
Schunck algorithm on a number of image sequences. <g\‘~‘
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1. Introduction

One of the key problems in analysis of time-varying images
is the computation of object motion from frame to frame. Huang
(1] identifies three approaches to motion estimation from image
B sequences:

1) Fourier methods
2) Correspondence methods
- 3) Differential methods.

Fourier methods are based on the observation that a 2-D
translation and/or rotation of an image has a simple effect on
the Fourier transform of the image. For example, a translation
results in a phase shift of the transform, so that differences
in the appropriate phase angles from frame to frame determine a
-4 translation. For this approach to work, the object must be trans-
lating across a homogeneous ("flat") background. However, exten-
sions to rotation (and scale) involve more complicated compari-
< son of transforms, which makes the approach computationally unat-
tractive.

Correspondence methods are two stage methods and involve

1) finding image points in successive frames which corres-

pond to the projection of the same scene point, and

2) using those correspondences to solve for the motion.

Step 2 is straightforward in principle, although it may involve
non-linear parameter estimation (see Ullman (2], Huang (1] and
Huang and Tsai [3]). If the motion changes slowly with time,

';Q then this is not a severe practical problem.
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K For step 1, we must determine reliably identifiable image

features which are invariant to motion. For example, if image
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boundaries correspond to locally planar reflectance contours on
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3-D objects, then curvature discontinuities and curvature zero-

crossings are features invariant to motion, and can be used to .

compute the correspondences in step l. For a survey of match-

o ing algorithms for solving the correspondence problem, see [4].
Differential methods are based on the relationship between

vj motion and spatial/temporal image intensity derivatives, name-

:5 ly that

~I, =Iu+Iv (1)

b t Yy

é where I, is the temporal intensity derivative, I, and I  are

4 the spatial intensity derivatives in the x and y directions,

and u and v are the components of the motion in the x and y direc-

tions. Equation (1) can be derived using a Taylor series expan-
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sion for the image function and assuming a) that gray level is
invariant to motion and b) that the image intensity function
is locally planar, i.e., higher order spatial intensity deriva-
tives are zero. Equation (1) represents a linear constraint
on u and v, 80O ﬁhat while the component of motion in the gradi-

ent direction can be determined (the "normal component"), the

TALTI AP ¢ L DS RN DY,

component in the level direction cannot. However, by combining

the motion constraints from a number of points, one can compute

] an estimate of the image motion.
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These constraints are combined based on assumptions about
the image vectors. For example, in {5,6] the assumption is
made that the image motion vectors are locally constant (cor-
responding to an image plane translation) so that the least-
square pseudo-intersection of the constraint lines in (u,v)
space represents the motion vector at each point. Since such
approaches require combining the normal velocity components of
neighboring points, they will not yield reliable estimates near
the boundaries of moving objects. In Section 2 of this paper we
show how multiple linear constraints on image motion can be
derived at individual points so that a motion estimate can be
computed for a point without'making any assumptions about the
spvatial pattern of motion vectors.

Unfortunately, the motion vectors computed using this ap-
proach (or the pseudo-intersection approach) are not reliable,
so that it is desirable to perform some (perhaps iterative)
spatial smoothing of the vectors. An important property of such
smoothing schemes is that they should not smooth across the boun-
dary of a moving object. In Section 3 of this paper we present
such a technique. We assume that the image motion is locally a
rigid 2kD motion (see also Schalkoff and McVey [7]),'and smooth
the velocity vector at a point based on associating it with that
one of its 8-neighbors whose neighborhood is "most smooth" in
this sense (compare Haralick [8]). For interior points near the
boundary of a moving object, we could expect such an approach to
choose a neighborhood which is completely contained within the

opnject.
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2. Multiple constraint equations of a single point

The differential methods discussed in Section 1 are based
on thé assumption that the image intensity corresponding to
any scene point is invariant to motion; i.e., if I(x,y,t) is
the intensity at position (x,y) and time t, and if the image
motion is (u,v), then I(x,y,t)=I(x+u,y+v,t+l). Since the in-
tensity is invariant to motion, so are various derivatives of
intensity. 1In particﬁlar, the gradient of intensity would be
invariant to motion, so that we can write a second linear con-
straint on the image motion:

Gxu + G v = =G (2)

b4 t

where Gx and G, are the spatial derivatives of the image gradi-

y
ent (i.e., directional second derivatives) and Gy is the tem-
noral derivative of the gradient.

In general, if F denotes any motion-invariant feature, we
can produce the constraint eguation

Fou + Fyv = -F, (3)
For example, F may be the gradient direction, the curvature of
the surface, the moments of local intensity distributions, or
higher-order derivatives of intensity. However, in practice,
features that are defined in terms of higher-order spatial
derivatives are not reliable since the differentiation operation
tends to amplify noise.

Notice that we can also construct sets of constraint equa-

tions from color images, since at least one constraint equation
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may be obtained from each band. If more than two constraint

equations are available at any point, then a least-square solu-
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tion to the pseudo-intersection of these constraints can be

obtained using pseudo-inverse techniques.
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3. 1Iterative algorithm for motion enhancement

PN

The velocity vectors computed either by spatially integrat-

%P

ing constraints from local neighborhoods of points or combining

multiple constraint equations from a single point are often inac-

A -2t AN

curate. In this section we introduce an iterative algorithm for

4]

enhancing such motion vectors.

T LB

The method for smoothing motion vectors is based on the fol-
lowing two assumptions:

1. Objects are rigid, and

g -
PPNy

2. Objects are undergoing 2%D motion, i.e., they move
along a plane perpendicular to the line of sight with

5 arbitrary translational and rotational velocity.
; We iteratively update the velocity at point P on the image
as follows. First, choose the neighbor of P whose 3x3 neighbor-
hood of motion vectors best fits a 2%D rigid motion. Let the
rotational velocity in that neighborhood be w. Since the rota-
tional velocity is constant over a single moving object, we
regard w as the rotational velocity for P and update the velo-
city at P. The details are described below.

“Figure 1 shows an object moving with angular velocity ]

and translational velocity v&. O* is the center of rotation.

¥ Fo :

W For an arbitrary point P on the object surface, the resultant

g

» * .
velocity v is

-3=$T+‘fx§ (4)
. iy

Given the image motion vectors at P and P', we compute w (the

o b RN R

rotatioﬁal vglocity of P' about P) as follows:
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(5)

=Y - (6)

- >
Av = v' -

AT = R' -

-1 -1 4

The rotational velocity w' at P' with respect to P is then

. -+ -
X - Ar x Ar
A oY = (7)
: 18212
5 The rotational velocity at P is obtained by averaging o' for
: all points in a neighborhood, N, of P of size n:
w
¥ w= I ®/n (8)
) i€N
4
f To compute motion along the line of sight, we consider the quan-
: tity
’ AT * AV
‘ D= 1 =5 (9)
: ieN |[lar]]

D is a measure of dilation, which reflects motion along the line

of sight. For 2%D object motion D should be constant for all

2w 19

points in a moving object. (D>0 if the relative depth is de-

creasing.)

Next we consider the following two error measurements at an

arbitrary point i:

1 -+ »> .2
E;r = I llw; - wl (10)
f o 37
1
2
Ei = 2 [D, - D,] (11)

jen 3 i
To update the velocity at point P, we choose a point P' from P's
neighborhood such that the linear combination Ep, of the above
. two errors is a minimum at P':

= 1 . 2
min[Ej + 0 Ej] (12)

J€N

i Ep!
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where o is a scalar. The velocity v at P is then adjusted by

p;j assuming that P has the rotational velocity i' with respect to
f%i P' and computing
V=V - A x G (13)
e where 3'_15 the translational velocity at P' and AT is the vec- .
%ﬁ 1 tor joining P and P'. An important advantage of this approach
i is that since the error measurements along a moving boundary are
eal relatively large, the enhancement tends not to combine the mo-
{g ~ tion estimates across such boundaries.
%3
%
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4. Experiments
£ In this section we describe a set of experiments designed
Z; to demonstrate the behavior ofsfhe motion estimation and smooth-
f ing algorithms described in the previous sections. For com-
% parison, we also implemented one other motion estimation algo-
;? rithm (the pseudo-intersection method mentioned in Section 1) and
; one of the motion smoothing algorithms (the one described in
‘? Horn and Schunck [9] - although note that in [9] the original
Ei motion vector field was just the field of normal components).
.; Theﬁivp t image sequences are displayed in Figures 2-4.
;% Figure i srst a sequence that contains two moving cars. Figure
§ 3 and 4 ére synthetic images. In Figure 3, a sphere rotates

in the image plane, while approaching the viewer (a 2-D rotation
with zoom). 1In Figure 4, the same sphere undergoes a 3-D rota-

tion, while approaching the viewer and translating towards the

SWRHPY 1o P,

right. The intensity correspohding to any point on the sphere

i

is invariant to the motion.
Although, in principle, it is possible to use the multiple

constraint method to compute a velocity vector at each point, in

P W AR

. ‘ fact a number of practical considerations limit the set of points
‘ at which useful estimates can be obtained to points:
b 1) having non-zero spatial and temporal intensity derivatives,

9 2) having non-singular matrices corresponding to the multi-

ple constraint equations, and

ALY W

3) for which the estimated motion is small (i.e., vector

magnitude less than 5 pixels).
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Figure 5a shows the motion estimates for the multi-con-
i straint method for frame 6 of the moving car sequence. All
spatial derivatives are based on fitting a quadratic surface
to a 5x5 neighborhood, and all temporal gradients are based
on a quadratic approximation to 5 consecutive temporal
points. For comparison, Figure 5b shows the motion vectors
computed by the pseudo-intersection method. They are much
i better approximations to the actual motion, although as we
: shall see, the motion enhancement algorithm plays a larger
~ role than the initial estimates in determining the accuracy
+ B of the final motion vector field.

% Next, we consider three combinations of initial motion
i estimation and motion enhancement:

A) Multi-constraint initial estimation with Horn and

Schunck motion enhancement.

A

B) Pseudo-intersection initial estimation with Horn and

Ul

Schunck motion enhancement.
C) Pseudo-intersection initial estimation with the motion

enhancement algorithm of Section 3.

* LR L AL NS

By comparing A and B we can evaluate the role of the initial
e estimates in the overall motion computation, while the compari-

! son of B with C can demonstrate whether the computationally

more costly algorithm of Section 3 (which is designed to avoid
smoothing over motion boundaries) has its higher cost justified

by better motion estimates.
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In order to evaluate the results quantitatively, we con-
sider two error measures. The first measure was designed
to enable us to evaluate motion estimates on sequences for
which the actual motion is unknown and is based on measur-
ing how well the motion vectors predict intensity from one

frame to the next. This measure, Ep, is defined as

1l t+l t
E (t) == L[ |I; - I .
P D ojer 1YYy
where:
t

a) L 94 is the intensity of pixel i at time t,
b) L is the set of pixels at which the estimated motion vector
is non-zero, and
c) n is the size of L.
The second measure, Ev' compares the estimated motion vectors
with true motion vectors, and is defined as
1 - -+

E,(t) = - ”V; -

where
a) V*,t is the true motion vector at point i at time ¢,
b) vi,t is the estimated motion vector at point i at time t,
c) K is the set of points having non-zero true motion, and
d) m is the size of the set K.
Figure 6a-d show Ep for four frames of the car sequence in .

Figure 2. We can make the following observations about these

graphs (the observations also hold for other frames in this

sequence):
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1) The final motion vectors are not particularly sensitive
to the choice of initial estimate, but appear to depend
more c;itically on the enhancement algorithm. (Compare
A-B.)

2) Most of the enhancement takes place during the first
two iterations of either enhancement algorithm.

3) After 3 iterations the differences between all three ap-
proaches are insignificant, so that we would choose among
them based on computational cost (which would lead to a
choice of B - pseudo-intersection with Horn and Schunck.)
Since the multi-constraint method offers no practical
advantages over pseudo-intersection method for initial
motion estimation, we will not consider method A in the
remaining examples.

Consider next the spheres in Figures 3 and 4. Figures 7 and

8 show Ev for one frame from each of these sequences.

Here, curve A corresponds to the non-linear enhancement algo-
rithm in Section 3 and curve B corresponds to the Horn-Schunck
algorithm. Furthermore, we have decomposed the total error into
two components - one corresponding to a region near the border
of the sphere (A-1] and B-l), and the second corresponding to the
interior of the sphere (A-2, B-2). We observe that for both the
2-D and the 3-D motion, the error component due to the boundary
is less for the non-linear enhancement algorithm than for the
Horn-Schunck algorithm. Thus, near the boundary, at least, the

search for a "best" neighborhood to compute the enhancement does

lead to more accurate motion estimates. Considering the




..............

R A I B I B R R AR A A I S O A P A A I L IR R A i D R

= Sy

R
|

{1 component of error on the interior of the sphere, we note that

.g' both the non-linear algorithm and Horn-Schunck produce very

f;f - accurate motion estimates for the 2%D motion (errors of ~.1).

"] . This is not surprising, since the non-linear algorithm is expli-
-3 citly based on a 24D motion assumption, while as regards Horn-

i Schunck, the Laplacian of a 2%D motion vector field is zero.

5 The two algorithms produce similar, but higher, errors in the

fé 3-D motion case, the slightly better performance of the nonlinear
i algorithm perhaps attributable to the search for a best neigh-

-' borhood.
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5. Conclusions

Based on the experiments presented in Section 4 we can

draw the following conclusions:

RS

o]
ﬁ 1. The multi-constraint algorithm does not produce
i reliable motion estimates.
'é 2. The enhancement algorithm plays a much larger role
3
@ than the initial estimates in determining the utility
~‘4'
of the final motion estimates.
i 3. Enhancing the motion estimate of a pixel based on first
i
jB searching for the "best" neighborhood containing that
:' pixel (i.e., the neighborhood whose motion estimates
2
k- best satisfy the given motion model) yields much more
f% accurate motion estimates near the borders of moving
- regions.
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= Fig. 1. A rigid object under general 3D motion.
4 O* is the instantaneous center of rota-

X tion at which the velocity is Vt
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Fig. 2. Moving cars.
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Sphere undergoing a 2%D motion.

Fig.

4.

Sphere undergoing a 3-D motion.
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